The effect of finite compressive strain on chondrocyte viability in statically loaded bovine articular cartilage.

نویسندگان

  • N O Chahine
  • G A Ateshian
  • C T Hung
چکیده

Recent studies have reported that certain regimes of compressive loading of articular cartilage result in increased cell death in the superficial tangential zone (STZ). The objectives of this study were (1) to test the prevalent hypothesis that preferential cell death in the STZ results from excessive compressive strain in that zone, relative to the middle and deep zones, by determining whether cell death correlates with the magnitude of compressive strain and (2) to test the corollary hypothesis that the viability response of cells is uniform through the thickness of the articular layer when exposed to the same loading environment. Live cartilage explants were statically compressed by approximately 65% of their original thickness, either normal to the articular surface (axial loading) or parallel to it (transverse loading). Cell viability after 12 h was compared to the local strain distribution measured by digital image correlation. Results showed that the strain distribution in the axially loaded samples was highest in the STZ (77%) and lowest in the deep zone (55%), whereas the strain was uniformly distributed in the transversely loaded samples (64%). In contrast, axially and transversely loaded samples exhibited very similar profiles of cell death through the depth, with a preferential distribution in the STZ. Unloaded control samples showed negligible cell death. Thus, under prolonged static loading, depth-dependent variations in chondrocyte death did not correlate with the local depth-dependent compressive strain, and the prevalent hypothesis must be rejected. An alternative hypothesis, suggested by these results, is that superficial zone chondrocytes are more vulnerable to prolonged static loading than chondrocytes in the middle and deep zones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of the Frequency Effect of Dynamic Compressive Loading on Primary Articular Chondrocyte Functions Using a Microcell Culture System

Compressive stimulation can modulate articular chondrocyte functions. Nevertheless, the relevant studies are not comprehensive. This is primarily due to the lack of cell culture apparatuses capable of conducting the experiments in a high throughput, precise, and cost-effective manner. To address the issue, we demonstrated the use of a perfusion microcell culture system to investigate the stimul...

متن کامل

Subphysiological Compressive Loading Reduces Apoptosis Following Acute Impact Injury in a Porcine Cartilage Model

BACKGROUND Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine articular cartilage plugs. HYPOTHESIS Compressive loading of acutely injured cartilage can mainta...

متن کامل

Mapping Chondrocyte Viability, Matrix Glycosaminoglycan, and Water Content on the Surface of a Bovine Metatarsophalangeal Joint

OBJECTIVE The purpose of this study was to determine if there were variations in chondrocyte viability, matrix glycosaminoglycan (GAG), and water content between different areas of the articular surface of a bovine metatarsophalangeal joint, a common and reliable source of articular cartilage for experimental study, which may compromise the validity of using multiple samples from different site...

متن کامل

Design and validation of an in vitro loading system for the combined application of cyclic compression and shear to 3D chondrocytes-seeded agarose constructs.

Physiological loading is essential for the maintenance of articular cartilage by regulating tissue remodelling, in the form of both catabolic and anabolic processes. To promote the development of tissue engineered cartilage which closely matches the long term functionality of native tissue, bioreactors have been developed to provide a combination of loading modalities, which reflect the nature ...

متن کامل

Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage.

OBJECTIVE To determine whether load-induced injury causes alterations in proteoglycan (PG), stromelysin-1 (MMP-3) and collagen in articular cartilage. METHODS Mature bovine cartilage was cyclically loaded at 0.5 Hz with 1 and 5 MPa for 1, 6 and 24h. Immediately after loading explants were evaluated for cell viability. Alterations in matrix integrity were determined by measuring PG content, PG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 6 1-2  شماره 

صفحات  -

تاریخ انتشار 2007